
© 2020 Laird Connectivity/atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

Summit Linux FIPS Core Crypto Module

Software Version 7.0

Hardware Version ATSAMA5D31, ATSAMA5D36

FIPS 140-2 Non-Proprietary Security Policy

Document Version 1.1

Last update: 2020-Dec-18

Prepared by:

atsec information security corporation

9130 Jollyville Road, Suite 260

Austin, TX 78759

www.atsec.com

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 2 of 45

Table of Contents

1 Introduction .. 6

1.1 Purpose of the Security Policy ... 6

1.2 Target Audience ... 6

1.3 How this Security Policy was Prepared .. 6

2 Cryptographic Module Specification .. 7

2.1 Module Overview ... 7

2.2 FIPS 140-2 Validation Scope .. 7

2.3 Definition of the Cryptographic Module and its Cryptographic Boundaries 7

2.4 Tested Environments ... 10

2.5 Modes of Operation ... 11

3 Module Ports and Interfaces ... 12

4 Roles, Services and Authentication ... 13

4.1 Roles .. 13

4.2 Services ... 13

4.2.1 Services in the FIPS-Approved Mode of Operation .. 13

4.2.2 Services in the Non-FIPS-Approved Mode of Operation ... 16

4.3 Algorithms .. 19

4.3.1 FIPS-Approved .. 20

4.3.2 Non-Approved-but-Allowed .. 25

4.3.3 Non-Approved .. 26

4.4 Operator Authentication .. 28

5 Physical Security ... 29

6 Operational Environment .. 30

6.1 Applicability ... 30

6.2 Policy .. 30

7 Cryptographic Key Management ... 31

7.1 Random Number Generation ... 34

7.2 Key Generation .. 34

7.3 Key Entry/Output ... 35

7.4 Key/CSP Storage .. 35

7.5 Key/CSP Zeroization ... 35

7.6 Key Establishment ... 35

8 Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC) 37

9 Self-Tests .. 38

9.1 Power-Up Self-Tests ... 38

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 3 of 45

9.2 Conditional Self-Tests .. 39

9.3 On-Demand Self-tests .. 39

10 Guidance ... 40

10.1 Crypto-Officer Guidance .. 40

10.2 User Guidance ... 40

10.2.1 Random Number Generator ... 40

10.2.2 AES GCM IV .. 40

10.2.3 AES-XTS .. 41

10.2.4 Key Usage and Management ... 41

10.3 Handling Self-Test Errors ... 41

11 Mitigation of Other Attacks .. 43

12 Acronyms, Terms and Abbreviations ... 44

13 References .. 45

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 4 of 45

List of Tables

Table 1: FIPS 140-2 Security Requirements. ... 7

Table 2: Components of the cryptographic module ... 9

Table 3: Tested operational environments. .. 10

Table 4: Ports and interfaces. ... 12

Table 5: Services in the FIPS-approved mode of operation. ... 13

Table 6: Services in the non-FIPS approved mode of operation. .. 16

Table 7: FIPS-approved cryptographic algorithms. ... 20

Table 8: Non-Approved-but-allowed cryptographic algorithms. ... 25

Table 9: Non-FIPS approved cryptographic algorithms. ... 26

Table 10: Lifecycle of keys and other Critical Security Parameters (CSPs). 31

Table 11: Self-tests. .. 38

Table 12: Conditional self-tests. ... 39

List of Figures

Figure 1: Physical configurations of the module: (a) The WB50NBT microprocessor unit (MPU) with
Microchip/Atmel ATSAMA5D31 microprocessor. (b) the 60 system on module (SOM) with
Microchip/Atmel ATSAMA5D36 microprocessor. ... 8

Figure 2: Block diagram with logical and physical cryptographic boundaries. The logical boundary
is indicated by the orange components (which represent a subset of the actual set of
components). The physical boundary, indicated in a dark pink line, is the perimeter of the circuit
board on which the Microchip/Atmel microprocessor is installed. The dotted line encompasses the
components that are accessible through the software API. ... 10

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 5 of 45

This page intentionally left blank.

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 6 of 45

1 Introduction

This document is the non-proprietary FIPS 140-2 Security Policy for the Summit Linux FIPS Core
Crypto Module, software version 7.0, hardware version ATSAMA5D31, ATSAMA5D36. It contains
the security rules under which the module must be operated and describes how this module meets
the requirements as specified in FIPS 140-2 (Federal Information Processing Standards Publication
140-2) for a Security Level 1 module.

1.1 Purpose of the Security Policy

There are three major reasons that a security policy is needed:

• It is required for FIPS 140-2 validation,

• It allows individuals and organizations to determine whether a cryptographic module, as
implemented, satisfies the stated security policy, and

• It describes the capabilities, protection and access rights provided by the cryptographic
module, allowing individuals and organizations to determine whether it will meet their
security requirements.

1.2 Target Audience

This document is part of the package of documents that are submitted for FIPS 140 2 conformance
validation of the module. It is intended for the following audience:

• Developers.

• FIPS 140-2 testing lab.

• The Cryptographic Module Validation Program (CMVP).

• Customers using or considering integration of the Summit Linux FIPS Core Crypto Module.

1.3 How this Security Policy was Prepared

The vendor has provided the non-proprietary Security Policy of the cryptographic module, which
was further consolidated into this document by atsec information security together with other
vendor-supplied documentation as guided by FIPS 140-2 IG G.9. In preparing the Security Policy
document, the laboratory formatted the vendor-supplied documentation for consolidation without
altering the technical statements therein contained. The further refining of the Security Policy
document was conducted iteratively throughout the conformance testing, wherein the Security
Policy was submitted to the vendor, who would then edit, modify, and add technical contents. The
vendor would also supply additional documentation, which the laboratory formatted into the
existing Security Policy, and resubmitted to the vendor for their final editing.

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 7 of 45

2 Cryptographic Module Specification

2.1 Module Overview

The Summit Linux FIPS Core Crypto Module (hereafter referred to as the “module”) is a Software-
Hybrid module supporting FIPS 140-2 Approved cryptographic algorithms. The module is
composed by a hardware component, the ARM-based Microchip/Atmel microprocessor, and
software components comprised of a kernel and OpenSSL libraries. These libraries provide a C
language application program interface (API) for use by other processes that require cryptographic
functionality.

The module offers approved cryptographic functions in the FIPS mode for:

• Algorithms for use in the Wi-Fi protocols CCMP and GCMP.

• Algorithms for use in the TLS protocol.

• Encryption and decryption for data at rest.

2.2 FIPS 140-2 Validation Scope

Table 1 shows the security level claimed for each of the eleven sections that comprise the FIPS
140-2 standard.

Table 1: FIPS 140-2 Security Requirements.

Security Requirements Section Level

1 Cryptographic Module Specification 1

2 Cryptographic Module Ports and Interfaces 1

3 Roles and Services and Authentication 1

4 Finite State Machine Model 1

5 Physical Security 1

6 Operational Environment 1

7 Cryptographic Key Management 1

8 EMI/EMC 1

9 Self-Tests 1

10 Design Assurance 1

11 Mitigation of Other Attacks N/A

Overall Level 1

2.3 Definition of the Cryptographic Module and its Cryptographic
Boundaries

The Summit Linux FIPS Core Crypto Module is defined as a Software-Hybrid, Multi-chip Standalone
module per the requirements within FIPS 140-2. The logical cryptographic boundary of the module
consists of the embedded hardware AES cryptographic engine and NDRNG within the
Microchip/Atmel microprocessor, the software component files (kernel, SummitSSL, and the
fipscheck integrity test tool) and the integrity test HMAC files.

Figure 1 depicts the physical representations of the module. These representations are included in
the tested environments, further described in Section 2.4.

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 8 of 45

(a) (b)

Figure 1: Physical configurations of the module: (a) The WB50NBT microprocessor unit (MPU) with
Microchip/Atmel ATSAMA5D31 microprocessor. (b) the 60 system on module (SOM) with

Microchip/Atmel ATSAMA5D36 microprocessor.

Table 2 lists the components that integrate the module. The software components of the module
are of version 7.0.

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 9 of 45

Table 2: Components of the cryptographic module

Component Description

Microchip/Atmel ATSAMA5D31 and
ATSAMA5D36 ARM Cortex A5-based
microprocessors

Hardware component with embedded AES
engine and the NDRNG (individual versions for
each test operational environment are listed in
Table 3). This hardware component is only
accessible to a user of the module through the
kernel component interface.

SummitSSL library (libcrypto.so)

HMAC:
e0a3831e7515ca02239a0c4bd794625c025df7
f8de8e7ec3ae4bf3f67f2a6d1c

Software shared librariy, based on OpenSSL
version 1.0.2u, containing cryptographic
algorithms.

Summit Linux kernel

HMAC:
f663b92de10525d2ec7ff9aacd23f384ae116f86
96db7db7bb10d1d01954cdb0

Kernel based on Linux kernel version 4.19,
containing cryptographic algorithms. The
kernel function as the interface to the
hardware component; the hardware
component cannot be accessed directly by a
user of the module.

HMAC integrity files Files containing HMAC values for integrity test
of software components.

fipscheck integrity test tool

Executable HMAC:
88adb74a99a4c9e2ae1d0332ac4af23ea5f9e2d
40f9f4c6afe1afa8b041c6af4

Library HMAC:
3603af6c623a3021547aa092ec1503be45d3c5
96d957a794c6ffd3b5b9f92bb1

Software tool that performs integrity test of
the software components of the module.

Figure 2 shows the block diagram of the module. The logical cryptographic boundary is indicated
with orange blocks, distributed among hardware and software components. Blocks of another color
do not belong to the logical boundary. Users of the module interact through the software API that
are the logical interfaces mapping to the FIPS interfaces (data input and output, control input,
status output). A dotted line encompasses the module’s components that interface through the
API.

In Figure 2, users of the module are exemplified by applications. These applications may reside
within the NAND Flash memory or may reside outside (but still within the physical boundary),
always interacting with the module’s API.

The physical cryptographic boundary of the module is defined as the perimeter of the circuit board
on which the module is installed (Section 2.4). The filesystem resides on NAND Flash memory
within the physical boundary. No components are excluded from the requirements of FIPS 140-2.

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 10 of 45

Figure 2: Block diagram with logical and physical cryptographic boundaries. The logical boundary
is indicated by the orange components (which represent a subset of the actual set of

components). The physical boundary, indicated in a dark pink line, is the perimeter of the circuit
board on which the Microchip/Atmel microprocessor is installed. The dotted line encompasses the

components that are accessible through the software API.

2.4 Tested Environments

The module was tested on the environments/platforms listed in Table 3. These environments are
composed of the WB50NBT microprocessor unit (MPU) with Microchip/Atmel ATSAMA5D31
microprocessor, and the 60 system on module (SOM) with Microchip/Atmel ATSAMA5D36
microprocessor, each of them mounted on a development board that provides the modules with
power, filesystem, network and other interfaces.

Table 3: Tested operational environments.

Operating System Microprocessor Hardware

Summit Linux 7.0 Microchip/Atmel ATSAMA5D31,
ARM Cortex A5-based

DVK-WB50NBT development
board

Summit Linux 7.0 Microchip/Atmel ATSAMA5D36,
ARM Cortex A5-based

DVK-SU60-SOMC 60 Series
SOM development board

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 11 of 45

2.5 Modes of Operation

The module supports two modes of operation.

• In "FIPS mode" (the Approved mode of operation), only approved or allowed security
functions with the sufficient security strength are offered by the module.

• In "non-FIPS mode" (the non-Approved mode of operation), non-approved security
functions are offered by the module.

The module enters the operational mode after Power-On Self-Tests (POST) succeed. Once the
module is operational, the mode of operation is implicitly assumed depending on the selected
setting for the function FIPS_mode_set() invoked prior to the service, the security function invoked,
and the security strength1 of the cryptographic keys/curves chosen for the function or service.

In more detail, the module assumes the mode of operation in the following manner.

• Kernel Component and Hardware Component:

o The mode is implicitly assumed depending on the security function invoked and the
security strength of the cryptographic keys/curves chosen (see Table 5 and Table 6).

• SummitSSL Component:

o If FIPS_mode_set(0) is called before the invocation of the service, the module
implicitly assumes the non-FIPS mode of operation for any service.

o If FIPS_mode_set(1) is called before the invocation of the service:

▪ If the service is strictly listed in Table 5 and is using strictly algorithms,
keys/curves listed in Table 7 and Table 8, then the module assumes the FIPS-
approved mode of operation.

▪ Otherwise, the module assumes the non-FIPS mode of operation.

If the POST or the Conditional Tests fail (Section 9), the module goes into the error state. The
status of the module can be determined by the availability of the module. If the module is
available, then it had passed all self-tests. If the module is unavailable, it is because any self-test
failed, and the module has transitioned to the error state.

Keys and Critical Security Parameters (CSPs) used or stored in FIPS mode shall not be used in non-
FIPS mode, and vice versa.

1 See Section 5.6.1 in [SP800-57] for a definition of “security strength”.

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 12 of 45

3 Module Ports and Interfaces

The module provides cryptographic services and an application program interface (API). The kernel
component serves as the API to the hardware component.

The physical ports of the hardware component of the module are registers in the Microchip/Atmel
microprocessor, within the logical boundary of the module. These registers hold the data for API
parameters. The data flow in and out of registers via UART or SPI (Serial Peripheral Interface)
interfaces of the Microchip/Atmel microprocessor. The logical interfaces are represented by the API
through which applications request services and obtain responses. The API represent the logical
interfaces with both the software components and the hardware component of the module (which
can only be accessed through the software API by a user of the module).

Table 4 summarizes the logical interfaces and their mappings to physical ports and interfaces.

Table 4: Ports and interfaces.

Logical
Interface

Description

Data Input API input parameters for data

Data Output API output parameters for data

Control Input API function calls, API input parameters for control.

Status Output API return codes, API output parameters for status.

Power Input The hardware component of the module receives power from the circuit
board on which the module is installed. The power input is not applicable
for the software components.

The Data Input interface consists of the input parameters of the API functions. For the hardware
component, the input data is received from the Serial Peripheral Interface (SPI) or Universal
Asynchronous Receiver/Transmitter (UART) of the Microchip/Atmel microprocessor.

The Data Output interface consists of the output parameters of the API functions. For the hardware
component, the output data leaves the physical boundary of the Microchip/Atmel microprocessor
via its SPI or UART interfaces.

The Control Input interface consists of the API function calls and the input parameters used to
control the behavior of the module. For the hardware component, the API function calls are
handled by the system scheduler as interrupts. The control input enters the registers of the
module via its SPI or UART interfaces.

The Status Output interface includes the return code of the API functions and the status sent
through output parameters. For the hardware component, the return code or status output may
reside in the registers of the module or are sent out of the microprocessor via its SPI or UART
interfaces.

The Power Input, applicable only to the hardware component of the module, is represented by the
power supply port of the Atmel/Microchip microprocessor. Power is supplied by the circuit board
that supports the microprocessor.

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 13 of 45

4 Roles, Services and Authentication

4.1 Roles

The module supports the following roles:

• User role: performs all services (in both FIPS mode and non-FIPS mode of operation),
except module installation and configuration.

• Crypto Officer role: performs module installation and configuration.

The User and Crypto Officer roles are implicitly assumed by the entity accessing the module’s
services. In other words, by invoking a specific service offered by the module, the role is implicitly
assumed by the entity according to the service that was invoked by that entity, as the service is
defined to one or the other role.

4.2 Services

The module provides services to entities who assume one of the available roles. Table 5 and Table
6 depict all services, which are described with more detail in the user documentation. The tables
also list the roles allowed to invoke each service, and the keys and Critical Security Parameters
(CSPs) involved and how these keys and CSPs are accessed.

The module does not implement the GCMP, CCMP, or TLS protocols, but rather the cryptographic
algorithms (such as the TLS KDF and SP800-108 KDF) that can be used to implement those
protocols by applications.

The tables use the following convention when specifying the access permissions that the service
has for each CSP or key. The applicable abbreviations are shown within parentheses.

• Create (C): the user entity can create a new CSP.

• Read (R): the user entity can read the CSP.

• Update (U): the user entity can write a new value to the CSP.

• Zeroize (Z): the user entity can zeroize the CSP.

• N/A: the user entity does not access any CSP or key during its operation.

For the “Role” column, U indicates the User role, and CO indicates the Crypto Officer role. An X
marks which role has access to that service.

4.2.1 Services in the FIPS-Approved Mode of Operation

Table 5 provides a full description of FIPS Approved services and the non-Approved but Allowed
services provided by the module in the FIPS-approved mode of operation.

Table 5: Services in the FIPS-approved mode of operation.

Service Service Description
and Algorithms

Role Keys and CSPs Access
Types

U CO

SummitSSL Component, Services with FIPS_mode_set(1)

Symmetric
Encryption/Decrypti
on

Encrypts or decrypts a
block of data using AES.

X AES Key R

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 14 of 45

Service Service Description
and Algorithms

Role Keys and CSPs Access
Types

U CO

RSA Key Generation Generate RSA
asymmetric keys using
DRBG.

X RSA public/private keys C, R, U

DSA Key Generation Generate DSA
asymmetric keys using
DRBG.

X DSA public/private keys C, R, U

ECDSA Key
Generation

Generate ECDSA
asymmetric keys using
DRBG.

X ECDSA public/private
keys

C, R, U

RSA Digital
Signature
Generation and
Verification

Sign and verify signature
operations for RSA
PCKS#1v1.5, RSA-PSS
and X9.31.

X RSA public/private keys R

DSA Digital
Signature
Generation and
Verification

Sign and verify signature
operations for DSA.

X DSA public/private keys R

ECDSA Digital
Signature
Generation and
Verification

Sign and verify signature
for ECDSA.

X ECDSA public/private
keys

R

TLS Key Derivation Establish a TLS secure
channel.

KDF in TLS v1.0/1.1, TLS
v1.2 (SP800-135).

X Pre-master secret,
master secret, derived
key (AES, HMAC), KDF
internal state

C, R, U

Key-Based Key
Derivation (KBKDF)

SP800-108 KDF in
Counter mode.

Derive keys for
establishment of secure
communication channels.

X Key derivation key and
derived keys (AES,
HMAC), 802.11 pre-
shared key (PSK),
802.11 pairwise master
key (PMK), 802.11 KDF
internal state, 802.11
Temporal Keys, 802.11
MIC keys (KCK), 802.11
Key Encryption Key
(KEK), EAP-TLS MSK,
EAP-TTLS MSK, EAP-
PEAP MSK

C, R, U

Diffie-Hellman
Shared Secret
Computation

Establish a shared secret.

KAS FFC

X Diffie-Hellman
public/private keys,
shared secret (pre-
master secret)

C, R, U

EC Diffie-Hellman
Shared Secret
Computation

Establish a shared secret.

KAS ECC

X EC Diffie-Hellman
public/private keys,
shared secret (pre-
master secret)

C, R, U

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 15 of 45

Service Service Description
and Algorithms

Role Keys and CSPs Access
Types

U CO

Key Wrapping with
RSA

Encapsulates and
decapsulates a key using
RSA encrypt/decrypt
primitives

X RSA public/private keys.

Wrapped key.

C, R, U

Key Wrapping with
Symmetric
Algorithms

Wrap and unwrap keys
with AES-KW, AES-KWP

X AES keys (key wrapping
key).

Wrapped key.

C, R, U

Certificate
Management

Management of key
properties within
certificates.

X RSA, DSA, and ECDSA
public/private keys
associated to an X.509
certificate

R, U

Message
Authentication Code
(MAC)

Authenticate and verify
authentication of data
using HMAC-SHA-1,
HMAC-SHA2-224, HMAC-
SHA2-256, HMAC-SHA2-
384, HMAC-SHA2-512

X HMAC Key R

Authenticate and verify
authentication of data
using CMAC and GMAC
with AES-128, AES-192,
AES-256.

X AES Key R

Message Digest Hash a block of data with
SHS.

SHA-1, SHA2-224, SHA2-
256, SHA2-384, SHA2-
512

X None N/A

Random Number
Generation

Generate random
numbers based on the SP
800-90A DRBG.

X Entropy input string,
internal state, seed

C, R, U

Kernel and Hardware Components

Symmetric
Encryption/Decrypti
on

Encrypts or decrypts a
block of data using AES.

X AES Key R

Other FIPS-related Services

Show Status Show status of the
module state

X None N/A

Self-Test Initiate power-on self-
tests

X None N/A

Zeroize Zeroize all critical
security parameters

X All keys and CSPs Z

Module Installation Installation of the module X None N/A

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 16 of 45

Service Service Description
and Algorithms

Role Keys and CSPs Access
Types

U CO

Module
Configuration

Configuration of the
module

 X None N/A

S

4.2.2 Services in the Non-FIPS-Approved Mode of Operation

Table 6 presents the services only available in non-FIPS-approved mode of operation.

Table 6: Services in the non-FIPS approved mode of operation.

Service Service Description
and Algorithms

Role Keys and CSPs Access
Types

U CO

SummitSSL Component, Services with FIPS_mode_set(0)

Symmetric
Encryption/Decrypti
on

Encrypts or decrypts
a block of data using
AES.

X AES Key R

RSA Key Generation Generate RSA
asymmetric keys
using DRBG.

X RSA public/private keys C, R, U

DSA Key Generation Generate DSA
asymmetric keys
using DRBG.

X DSA public/private keys C, R, U

ECDSA Key
Generation

Generate ECDSA
asymmetric keys
using DRBG.

X ECDSA public/private keys C, R, U

RSA Digital
Signature
Generation and
Verification

Sign and verify
signature operations
for RSA PCKS#1v1.5,
RSA-PSS and X9.31.

X RSA public/private keys R

DSA Digital
Signature
Generation and
Verification

Sign and verify
signature operations
for DSA.

X DSA public/private R

ECDSA Digital
Signature
Generation and
Verification

Sign and verify
signature for ECDSA.

X ECDSA public/private keys R

TLS Key Derivation Establish a TLS
secure channel.

KDF in TLS v1.0/1.1,
TLS v1.2 (SP800-135).

X Pre-master secret, master
secret, derived key (AES,
HMAC), KDF internal state

C, R, U

Key-Based Key
Derivation (KBKDF)

SP800-108 KDF in
Counter mode.

X Key derivation key and
derived keys (AES, HMAC),
802.11 pre-shared key

C, R, U

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 17 of 45

Service Service Description
and Algorithms

Role Keys and CSPs Access
Types

U CO

Derive keys for
establishment of
secure
communication
channels.

(PSK), 802.11 pairwise
master key (PMK), 802.11
KDF internal state, 802.11
Temporal Keys, 802.11
MIC keys (KCK), 802.11
Key Encryption Key (KEK),
EAP-TLS MSK, EAP-TTLS
MSK, EAP-PEAP MSK

Diffie-Hellman
Shared Secret
Computation

Establish a shared
secret.

KAS FFC

X Diffie-Hellman
public/private keys,
shared secret (pre-master
secret)

C, R, U

EC Diffie-Hellman
Shared Secret
Computation

Establish a shared
secret.

KAS ECC

X EC Diffie-Hellman
public/private keys,
shared secret (pre-master
secret)

C, R, U

Key Wrapping with
RSA

Encapsulates and
decapsulates a key
using RSA
encrypt/decrypt
primitives

X RSA public/private keys.

Wrapped key

C, R, U

Key Wrapping with
Symmetric
Algorithms

Wrap and unwrap
keys with AES-KW,
AES-KWP

X AES keys (key wrapping
key).

Wrapped key

C, R, U

Message
Authentication Code
(MAC)

Authenticate and
verify authentication
of data using HMAC-
SHA-1, HMAC-SHA2-
224, HMAC-SHA2-
256, HMAC-SHA2-
384, HMAC-SHA2-512

X HMAC Key R

Authenticate and
verify authentication
of data using CMAC
and GMAC with AES-
128, AES-192, AES-
256

X AES Key R

Random Number
Generation

Generate random
numbers based on
the DRBG.

X Entropy input string,
internal state, seed

C, R, U

SummitSSL Component, Services with FIPS_mode_set(0) or FIPS_mode_set(1)

Symmetric
Encryption/Decrypti
on

Encrypts or decrypts
using non-Approved
algorithms or key
sizes not listed in
Table 7

X Triple-DES, Camellia,
CAST, DES, IDEA, RC2,
RC4, RC5 keys

R

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 18 of 45

Service Service Description
and Algorithms

Role Keys and CSPs Access
Types

U CO

RSA, DSA, ECDSA
Key Generation

Generation of non-
Approved RSA, DSA
and ECDSA keys

X RSA key < 2048 bits

DSA keys or ECDSA curves
not listed in Table 7

C, R, U

Digital Signature
Generation and
Verification

Sign or verify
operations with non-
Approved RSA, DSA,
or ECDSA key lengths
or curves

X RSA key < 2048

DSA keys or ECDSA curves
not listed in Table 7

Signature Generation with
SHA-1

R

TLS Key Derivation Negotiate a TLS
secure channel with
non-Approved key
sizes or curves

X RSA/Diffie-Hellman key <
2048 bits

EC Diffie-Hellman CSPs
with curves not listed in
Table 7 or Table 8.

C, R, U

Key Wrapping with
RSA

Encrypts or decrypts
using non-Approved
RSA key size

X RSA key pair C, R, U

Diffie-Hellman
Shared Secret
Computation

Establish a shared
secret.

KAS FFC

X Diffie-Hellman key < 2048
bits, shared secret

C, R, U

EC Diffie-Hellman
Shared Secret
Computation

Establish a shared
secret.

KAS ECC

X EC Diffie-Hellman CSPSs
with curves not listed in
Table 7 or Table 8, shared
secret

C, R, U

Random Number
Generation

Generation of random
numbers using the
ANSI X9.31 PRNG

X seed, seed key, internal
state

C, R, U

Message Digest Hashing using non-
Approved hash
functions that include
MD2, MD4, MD5,
MDC2, RIPEMD,
Whirlpool

X None N/A

J-PAKE Key
Agreement

Password
authenticated key
agreement using J-
PAKE

X J-PAKE key pair C, R, U

Kernel Component

Symmetric
Encryption/Decrypti
on

Encrypts or decrypts
using non-Approved
algorithms

X DES, RC4, Triple-DES keys R

Digital Signature
Generation and
Verification

Sign or verify
operations using RSA

X RSA key pair R

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 19 of 45

Service Service Description
and Algorithms

Role Keys and CSPs Access
Types

U CO

Key Wrapping with
RSA

Encrypts or decrypts
using RSA

X RSA key pair C, R, U

Diffie-Hellman
Shared Secret
Computation

Establish a shared
secret.

KAS FFC

X Diffie-Hellman
public/private keys,
shared secret

C, R, U

EC Diffie-Hellman
Shared Secret
Computation

Establish a shared
secret.

KAS ECC

X EC Diffie-Hellman
public/private keys,
shared secret

C, R, U

Message
Authentication Code
(MAC)

Authenticate and
verify authentication
of data using HMAC-
SHA-1, HMAC-SHA2-
224, HMAC-SHA2-
256, HMAC-SHA2-
384, HMAC-SHA2-
512, HMAC-SHA3-
224, HMAC-SHA3-
256, HMAC-SHA3-
384, HMAC-SHA3-512

X HMAC Key R

Authenticate and
verify authentication
of data using CMAC
with Triple-DES

X Triple-DES Key R

Message Digest Hashing using SHA-1,
SHA2-224, SHA2-256,
SHA2-384, SHA2-512,
SHA3-224, SHA3-256,
SHA3-384, SHA3-512,
MD5 hash functions

X None N/A

Random Number
Generation

Generate random
numbers based on
the DRBG.

X Entropy input string,
internal state, seed

C, R, U

Hardware Component

Message Digest Hashing using SHA-1,
SHA2-224, SHA2-256,
SHA2-384, SHA2-512

X None N/A

Symmetric
Encryption/Decrypti
on

Encrypts or decrypts
using DES, Triple-DES

X DES, Triple-DES keys R

4.3 Algorithms

The module implements cryptographic algorithms that are used by the services provided by the
module. The cryptographic algorithms that are approved to be used in the FIPS mode of operation
are tested and validated by the CAVP.

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 20 of 45

Table 7, Table 8 and Table 9 present the cryptographic algorithms in specific modes of operation.
These tables include the CAVP certificates for different implementations, the algorithm name,
respective standards, the available modes and key sizes wherein applicable, and usage.
Information from certain columns may be applicable to more than one row.

4.3.1 FIPS-Approved

Table 7 lists the cryptographic algorithms that are approved to be used in the FIPS mode of
operation.

Table 7: FIPS-approved cryptographic algorithms.

Algorithm Standard Mode/Method Key size Use CAVP Cert#

SummitSSL Component

AES [FIPS197]

[SP800-38A]

CBC, CFB1,
CFB8, CFB128,
CTR, ECB, OFB

128, 192 and 256
bits

Data
Encryption and
Decryption

#C1595

#C1612

[FIPS197]

[SP800-38B]

CMAC 128, 192 and 256
bits

MAC
Generation
and
Verification

[FIPS197]

[SP800-38C]

CCM 128, 192 and 256
bits

Data
Encryption and
Decryption

[FIPS197]

[SP800-38D]

GCM 128, 192 and 256
bits

Data
Encryption and
Decryption

[FIPS197]

[SP800-38D

GMAC 128, 192 and 256
bits

MAC
Generation
and
Verification

[FIPS197]

[SP800-38E]

XTS 128, 256 bits Data
Encryption and
Decryption

[FIPS197]

[SP800-38F]

KW, KWP 128, 192 and 256
bits

Key Wrapping
and
Unwrapping

DSA [FIPS 186-4] n/a L=2048, N=224;
L=2048, N=256;
L=3072, N=256

Key Pair
Generation.

#C1595

#C1612

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=32202
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=12166
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=32202
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=12166

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 21 of 45

Algorithm Standard Mode/Method Key size Use CAVP Cert#

P/Q Probable, G
Unverifiable

SHA2-224,
SHA2-256,
SHA2-384,
SHA2-512

L=2048, N=224 Domain
Parameter
Generation

P/Q Probable, G
Unverifiable

SHA2-256,
SHA2-384,
SHA2-512

L=2048, N=256;
L=3072, N=256

SHA2-224,
SHA2-256,
SHA2-384,
SHA2-512

L=2048, N=224;
L=2048, N=256;
L=3072, N=256

Signature
Generation

P/Q Probable, G
Unverifiable

SHA-1,
SHA2-224,
SHA2-256,
SHA2-384,
SHA2-512

L=1024, N=160 Domain
Parameter
Verification

P/Q Probable, G
Unverifiable

SHA2-224,
SHA2-256,
SHA2-384,
SHA2-512

L=2048, N=224

P/Q Probable, G
Unverifiable

SHA2-256,
SHA2-384,
SHA2-512

L=2048, N=256;
L=3072, N=256

SHA-1,
SHA2-224,
SHA2-256,
SHA2-384,
SHA2-512

L=1024, N=160;
L=2048, N=224;
L=2048, N=256;
L=3072, N=256

Signature
Verification

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 22 of 45

Algorithm Standard Mode/Method Key size Use CAVP Cert#

DRBG [SP800-90A] CTR_DRBG
AES128,
AES192,
AES256
with/without DF,
with/without PR

n/a Random
Number
Generation

#C1595

#C1612

ECDSA [FIPS186-4] Extra Bits B-233, B-283,
B-409, B-571,
K-233, K-283,
K-409, K-571,
P-224, P-256,
P-384, P-521

Key Pair
Generation

#C1595

#C1612

SHA2-224,
SHA2-256,
SHA2-384,
SHA2-512

B-233, B-283,
B-409, B-571,
K-233, K-283,
K-409, K-571,
P-224, P-256,
P-384, P-521

Signature
Generation

n/a B-233, B-283,
B-409, B-571,
K-163, K-233,
K-283, K-409,
K-571, P-192,
P-224, P-256,
P-384, P-521

Public Key
Verification

SHA-1,
SHA2-224,
SHA2-256,
SHA2-384,
SHA2-512

B-233, B-283,
B-409, B-571,
K-163, K-233,
K-283, K-409,
K-571, P-192,
P-224, P-256,
P-384, P-521

Signature
Verification

KAS FFC
Component

[SP800-56A] FFC dhEphem
scheme

Key Pair
Generation

p=2048, q=224
(FB);

p=2048, q=256
(FC)

Diffie-Hellman
Shared Secret
Computation

#C1595

#C1612

KAS ECC CDH
Component

[SP800-56A] Key Pair
Generation,
Partial Public
Key Validation

B-233, B-283,
B-409, B-571,
K-233, K-283,
K-409, K-571,
P-224, P-256,
P-384, P-521

EC Diffie-
Hellman
Shared Secret
Computation

#C1595

#C1612

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=32202
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=12166
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=32202
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=12166
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=32202
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=12166
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=32202
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=12166

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 23 of 45

Algorithm Standard Mode/Method Key size Use CAVP Cert#

HMAC [FIPS198-1] SHA-1,
SHA2-224,
SHA2-256,
SHA2-384,
SHA2-512

112 bits or
greater

Message
Authentication
Code

#C1595

#C1612

KDF in

TLS v1.0/1.1,
TLS v1.2

[SP800-135] SHA2-256,
SHA2-384,
SHA2-512

n/a Key Derivation #C1595

#C1612

KBKDF SP800-
108

[SP800-108] Counter Mode

HMAC-SHA2-
256, HMAC-
SHA2-384,
HMAC-SHA2-
512

n/a Key Derivation #C1595

#C1612

RSA [FIPS186-4] B.3.3 Random
Probably Primes

2048 and 3072
bits

Key Pair
Generation

#C1595

#C1612

X9.31 with
SHA2-256,
SHA2-384,
SHA2-512

2048 and 3072
bits

Digital
Signature
Generation

PKCS#1v1.5
with SHA2-224,
SHA2-256,
SHA2-384,
SHA2-512

2048 and 3072
bits

PSS with
SHA2-224,
SHA2-256,
SHA2-384,
SHA2-512

2048 and 3072
bits

X9.31 with
SHA-1,
SHA2-256,
SHA2-384,
SHA2-512

1024, 2048, and
3072 bits

Signature
Verification

PKCS#1v1.5
and PSS with
SHA-1,
SHA2-224,
SHA2-256,
SHA2-384,
SHA2-512

1024, 2048, and
3072 bits

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=32202
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=12166
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=32202
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=12166
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=32202
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=12166
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=32202
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=12166

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 24 of 45

Algorithm Standard Mode/Method Key size Use CAVP Cert#

[FIPS186-2] X9.31 with
SHA2-256,
SHA2-384,
SHA2-512

4096 bits Digital
Signature
Generation

PKCS#1v1.5
and PSS with
SHA2-224,
SHA2-256,
SHA2-384,
SHA2-512

4096 bits

SHS [FIPS180-4] SHA-1,
SHA2-224,
SHA2-256,
SHA2-384,
SHA2-512

N/A Message
Digest

#C1595

#C1612

KTS [SP800-38F] AES-GCM 128, 256 bits Key Wrapping #C1595

#C1612

[SP800-38F] AES-KW, AES-
KWP

128, 192, 256
bits

Key Wrapping #C1595

#C1612

CKG IG D.12

[SP800-133]

Asymmetric
keys (Section
7.2)

 Vendor
Affirmed

Kernel and Hardware Components

AES [FIPS197]

[SP800-38A]

CBC
(driver atmel-cbc-
aes)

CTR
(driver atmel-ctr-
aes)

ECB
(driver atmel-ecb-
aes)

Modes utilized
from the
hardware
component.

128, 192 and 256
bits

Data
Encryption and
Decryption

#C1588

#C1591

[FIPS197]

[SP800-38B]

CMAC
(driver atmel-
cmac-aes)

Uses AES-CTR
and AES-CBC
from hardware
component.

128, 192 and 256
bits

MAC
Generation
and
Verification

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=32202
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=12166
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=32202
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=12166
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=32202
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=12166
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=32195
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=32198

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 25 of 45

Algorithm Standard Mode/Method Key size Use CAVP Cert#

[FIPS197]

[SP800-38C]

CCM

(driver atmel-
ccm-aes)

Uses AES-CTR
and AES-CBC
from hardware
component.

128, 192 and 256
bits

Data
Encryption and
Decryption

[FIPS197]

[SP800-38D]

GCM
(driver
gcm_base(atmel-
ctr-aes,ghash-
generic))

Uses AES-CTR
from hardware
component.

128, 192 and 256
bits

Data
Encryption and
Decryption

[SP800-38A
Addendum]

CBC-CS1, CBC-
CS2, CBC-CS3

Uses AES-CBC
from hardware
component.

128, 192 and 256
bits

Data
Encryption and
Decryption

Vendor
Affirmed

[FIPS197]

[SP800-38E]

XTS

(driver xts(aes))

Uses AES-ECB
from hardware
component.

128, 256 bits Data
Encryption and
Decryption

#C1589

#C1590

KTS [SP800-38F] AES-GCM 128, 256 bits Key Wrapping #C1588

#C1591

CKG IG D.12

[SP800-133]

Asymmetric
keys (Section
7.2)

Defined by caller Key
Generation

Vendor
Affirmed

4.3.2 Non-Approved-but-Allowed

Table 8 lists the non-Approved-but-Allowed cryptographic algorithms provided by the module that
are allowed to be used in the FIPS mode of operation.

Table 8: Non-Approved-but-allowed cryptographic algorithms.

Algorithm Usage

RSA Key Wrapping with key
size between 2048 bits and
15360 bits (or more)

Key wrapping, key establishment methodology provides
between 112 and 256 bits of encryption strength. Allowed by
IG D.9.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=32196
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=32197
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=32195
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=32198

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 26 of 45

Algorithm Usage

Diffie-Hellman with key size
between 2048 bits and
15360 bits (or more)

Shared secret computation provides between 112 and 256 bits
of encryption strength. Allowed by IG A.14.

NDRNG Used for seeding the SP 800-90A DRBG.

4.3.3 Non-Approved

Table 9 lists the cryptographic algorithms that are not allowed to be used in the FIPS mode of
operation. Use of any of these algorithms (and corresponding services in Table 6) will implicitly
switch the module to the non-Approved mode.

Table 9: Non-FIPS approved cryptographic algorithms.

Algorithm Usage

SummitSSL Component

ANSI X9.31 RNG Random number generation

Camellia Encryption/decryption

CAST Encryption/decryption

DES Encryption/decryption

Diffie-Hellman Shared secret computation using keys of length less than 2048 bits not
listed in Table 7.

DSA Parameter/key generation/signature generation and verification with keys
not listed in Table 7

EC Diffie-Hellman Shared secret computation using curves not listed in Table 7 or Table 8

ECDSA Key generation/signature generation and verification with curves not
listed in Table 7

IDEA Encryption/decryption

J-PAKE Password Authenticated Key Exchange

MD2 Message digest

MD4 Message digest

MD5 Message digest

MDC2 Message digest

RC2 Encryption/decryption

RC4 Encryption/decryption

RC5 Encryption/decryption

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 27 of 45

Algorithm Usage

RIPEMD Message digest

RSA Key generation/signature generation, and key wrapping with keys of
length less than 2048 bits

SHA-1 In signature generation

Triple-DES Encryption/decryption

Whirlpool Message digest

Kernel Component

Triple-DES Encryption/decryption

DES

RC4

RSA Encryption/decryption

Signature Generation/Verification

Diffie-Hellman Shared secret computation

EC Diffie-Hellman Shared secret computation

HMAC-SHA-1,
HMAC-SHA2-224,
HMAC-SHA2-256,
HMAC-SHA2-384,
HMAC-SHA2-512,
HMAC-SHA3-224,
HMAC-SHA3-256,
HMAC-SHA3-384,
HMAC-SHA3-512

Keyed-hash message authentication code

Triple-DES-CMAC

SHA-1, SHA2-224,
SHA2-256, SHA2-
384, SHA2-512,
SHA3-224, SHA3-
256, SHA3-384,
SHA3-512,

Message digest

MD5

DRBG Random Number Generation

Hardware Component

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 28 of 45

Algorithm Usage

SHA-1, SHA2-224,
SHA2-256, SHA2-
384, SHA2-512

Message digest

Triple-DES Encryption/decryption

DES

4.4 Operator Authentication

The module does not support operator authentication mechanisms. The role of the operator is
implicitly assumed based on the service requested.

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 29 of 45

5 Physical Security

The module is a software-hardware hybrid module. The module contains standard integrated
circuits with a uniform exterior material and standard connectors. The module is enclosed within a
production-grade enclosure with components that include standard passivation techniques (e.g., a
conformal coating applied over the module's circuitry to protect against environmental or other
physical damage) conformant to the Level 1 requirements for physical security.

The physical security requirements do not apply to the software components of the module.

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 30 of 45

6 Operational Environment

6.1 Applicability

The module operates in a modifiable operational environment per FIPS 140-2 Security Level 1
specifications. The module runs on the Summit Linux operating system executing on the hardware
specified in Section 2.4.

6.2 Policy

The operating system is restricted to a single operator mode of operation (i.e., concurrent
operators are explicitly excluded by the operating system).

The application that makes calls to the modules is the single user of the modules, even when the
application is serving multiple clients.

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 31 of 45

7 Cryptographic Key Management

This section describes the cryptographic keys and CSPs managed by the module, and how this
management is performed during the keys and CSPs life cycle.

Table 10 summarizes the keys and other CSPs that are used by the cryptographic services
implemented in the module. The table lists the use of each key/CSP and, as applicable, how they
are generated or established, and their method of entry and output of the module. For all keys and
CSPs, the storage is in RAM in plaintext. The zeroization method is described in Section 7.5.

Table 10: Lifecycle of keys and other Critical Security Parameters (CSPs).

Name Use Generation/Esta
blishment

Entry and
Output

Type

AES Key Encryption,
decryption.

MAC generation
and verification
for CMAC.

Key wrapping.

Provided by the
user entity.

Entered via API
input parameter.

No output.

AES key, all
modes per Table
7.

Length: 128, 192
and 256 bits for
all modes except
XTS: XTS accepts
lengths of 128
and 256 bits.

AES Derived
Key

Encryption,
decryption.

MAC generation
and verification
for CMAC.

Key wrapping.

Derived during
802.11
authentication
using 802.11
SP800-108 KDF.

Derived by
SP800-135 KDF.

No entry.

Output via API
output
parameters in
plaintext.

AES key (CBC,
CCM, GCM) with
length 128 and
256 bits (defined
by TLS
ciphersuite,
CCMP, or GCMP).

HMAC Key MAC generation
and verification

Provided by the
user entity.

Entered via API
input parameter.

No output.

HMAC keys of
length > 112 bits.

HMAC
Derived Key

MAC generation
and verification

Derived during
802.11
authentication
using 802.11
SP800-108 KDF.

Derived by
SP800-135 KDF.

No entry.

Output via API
output
parameters in
plaintext.

HMAC key of
length defined by
ciphersuite,
CCMP, or GCMP.

RSA public
and private
key

RSA signature
generation and
verification.

Key wrapping.

Keys are
generated using
FIPS 186-4 and
the random value
used in the key
generation is
obtained from
SP800- 90A
DRBG.

Entered via API
input parameter
or generated by
module.

Output via API
output
parameters in
plaintext.

RSA keys of
length 1024,
2048, 3072 bits
(or more as
allowed for key
wrapping)

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 32 of 45

Name Use Generation/Esta
blishment

Entry and
Output

Type

DSA public
and private
key

DSA signature
generation and
verification.

Keys are
generated using
FIPS 186-4 and
the random value
used in the key
generation is
obtained from
SP800- 90A
DRBG.

Entered via API
input parameter
or generated by
module.

Output via API
output
parameters in
plaintext.

DSA keys of
length 1024,
2048, 3072 bits

ECDSA
public and
private key

ECDSA signature
generation and
verification.

Keys are
generated using
FIPS 186-4 and
the random value
used in the key
generation is
obtained from
SP800- 90A
DRBG.

Entered via API
input parameter
or generated by
module.

Output via API
output
parameters in
plaintext.

ECDSA keys for
all supported
curves in Table 7.

Diffie-
Hellman
public and
private key

Shared secret
computation.

Keys are
generated using
FIPS 186-4 and
the random value
used in the key
generation is
obtained from
SP800- 90A
DRBG.

N/A Key lengths 2048
bits and 15360
bits (or more).

EC Diffie-
Hellman
public and
private key

Shared secret
computation.

N/A All supported
curves in Table 7.

Pre-master
secret

Establishment of
encrypted
session.

Generated during
the shared secret
computation
when using Diffie-
Hellman or EC
Diffie-Hellman
key exchange.

Generated by TLS
client as output
from DRBG when
using RSA key
exchange.

Entry: if received
by module as TLS
server, wrapped
with server’s
public RSA key;
otherwise no
entry.

Output: if
generated by
module as TLS
client, wrapped
with server’s
public RSA key;
otherwise, no
output.

Length defined
per user
application
ciphersuite.

Master
secret

Establishment of
encrypted
session.

Derived from pre-
master secret.

N/A 384 bits.

Entropy
input string
(seed)

Entropy input
strings used as
seed to the
DRBG.

Obtained from
NDRNG.

N/A 384 bits.

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 33 of 45

Name Use Generation/Esta
blishment

Entry and
Output

Type

DRBG
Internal
state (V,
Key)

Used to generate
random bits.

During DRBG
initialization.

N/A Internal state.

RSA,
ECDSA, DSA
private key
associated
to an X.509
certificate,
and X.509
(public)
certificates

Client and server
authentication
during TLS
exchange.

Provided by the
user entity.

Entered via API
parameters. The
certificate can
exit the module
via TLS protocol.

RSA, DSA, ECDSA
keys and
certificates.

802.11 Pre-
shared key
(PSK)

Used for pre-
shared key
authentication
and session key
establishment,
as well as for
802.11 KDF

N/A Manually
distributed,
electronically
entered in
plaintext.

No exit.

Up to 256 bits of
length.

802.11
Pairwise
Master Key
(PMK)

Used for pre-
shared key
authentication
and session key
establishment,
as well as for
802.11 KDF

N/A Manually
distributed,
electronically
entered in
plaintext, or
derived from the
PSK or EAP
parameters.

No exit.

256 or 384 bits.

802.11 KDF
Internal
State

Used for SP 800-
108 KDF to
calculate the
WPA2 session
keys

SP 800-108 KDF N/A Internal state of
the KDF.

802.11
Temporal
Keys

AES-CCM or AES-
GCM keys used
for session
encryption/
decryption

SP 800-108 KDF N/A AES-CCM, AES-
GCM of 128 or
256 bits.

802.11 MIC
keys (KCK)

Key confirmation
keys (KCK) used
for message
authentication
during session
establishment

SP 800-108 KDF N/A 128 or 192 bits.

802.11 Key
Encryption
Key (KEK)

Used for AES Key
Wrapping of the
802.11 Group

SP 800-108 KDF N/A 128 or 256 bits.

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 34 of 45

Name Use Generation/Esta
blishment

Entry and
Output

Type

Temporal Key
(GTK)

802.11
Group
Temporal
Key (GTK)

802.11 session
key for
broadcast
communications

Established by
key transport:
wrapped with
802.11 KEK
([FIPS140-2_IG]
D.9).

Entered via key
transport:
wrapped with
802.11 KEK.

No exit.

128, 256 bits.

TLS KDF
Internal
State

Values of the TLS
KDF internal
state used in EAP
methods (Table
5).

SP 800-135 KDF N/A Internal state of
the KDF.

EAP-TLS
MSK

Establishment of
encrypted
session.

Derived from pre-
master secret

N/A At least 512 bits.

EAP-TTLS
MSK

Establishment of
encrypted
session.

Derived from pre-
master secret

N/A At least 512 bits.

EAP-PEAP
MSK

Establishment of
encrypted
session.

Derived from pre-
master secret

N/A At least 512 bits.

7.1 Random Number Generation

The module provides a DRBG compliant with [SP800-90A] for random number generation and the
creation of key components of asymmetric keys. The DRBG implements a CTR_DRBG mechanism
with AES-128, AES-192 or AES-256, with selectable enabling of derivation function and prediction
resistance. The DRBG is initialized during module initialization and seeded from the NDRNG
directly from /dev/hwrng with a seed of 384 bits. The NDRNG is provided by the hardware
component of the module, which is within the module’s logical boundary. The NDRNG provides at
least 256 bits of entropy in the seed to the DRBG.

The module performs the health tests for the SP800-90A DRBG as defined per Section 11.3 of
SP800-90A. The kernel component performs the continuous test on the NDRNG.

7.2 Key Generation

For generating RSA, DSA, ECDSA, Diffie-Hellman and EC Diffie-Hellman keys, the module
implements asymmetric key generation services compliant with [FIPS186-4] and using a DRBG
compliant with [SP800-90A]. The random value used in asymmetric key generation is obtained
from the DRBG. In accordance with FIPS 140-2 IG D.12, the cryptographic module performs
Cryptographic Key Generation (CKG) for asymmetric keys as per SP800-133 (vendor affirmed).

Symmetric keys are derived from the shared secret established by Diffie-Hellman and EC Diffie-
Hellman in a manner that is compliant to NIST SP800-135 for TLS KDF. Symmetric keys can also be
derived by means of the IEEE 802.11 protocols CCMP and GCMP, compliant to NIST SP800-108
KDF.

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 35 of 45

7.3 Key Entry/Output

AES, RSA private key, DSA private key, and ECDSA private key may enter the module via API input
parameters for encryption and decryption operations.

The module does not support manual key entry or intermediate key generation output. In addition,
the module does not produce key output outside its physical boundary. The keys can be entered
or output from the module in plaintext form via API parameters, to and from the calling application
only.

7.4 Key/CSP Storage

Public and private keys are provided to the module by the calling process and are destroyed when
released by the appropriate API function calls. The module does not perform persistent storage of
keys. The only exception is the HMAC key used for integrity test, which is stored in the module’s
file system. The HMAC key is used solely for the integrity check and cannot be exported from the
module or read by user APIs.

7.5 Key/CSP Zeroization

For the SummitSSL component, a general RAM zeroization API is provided:
sl_DeviceSet(SL_DEVICE_FIPS, SL_DEVICE_FIPS_ZEROIZATION, 0 , NULL). The API call
zeroizes all the RAM, and thus zeroizes all the keys and CSPs.

For the kernel component (and thus also the hardware component), this component provides two
zeroization APIs: crypto_free_cipher(), and crypto_free_aead(). Both these functions invoke
crypto_free_tfm(), which will zeroize the context and free the cipher handle.

Zeroization of all keys and CSPs in RAM can also be obtained by powering off the module, and then
powering the module back on (power cycle).

The application is responsible for calling the appropriate destruction functions from the SummitSSL
API and kernel API. The destruction functions then overwrite the memory occupied by keys with
zeros and deallocates the memory with the free() call. In case of abnormal termination, the keys in
physical memory are overwritten by the kernel before the physical memory is allocated to another
process.

7.6 Key Establishment

The module provides Diffie-Hellman and EC Diffie-Hellman shared secret computation. In addition,
the module offers AES key wrapping per [SP800-38F] and RSA key wrapping (encapsulation) using
public key encryption and private key decryption primitives as allowed by [FIPS140-2_IG] D.9. The
shared secret computation and key wrapping methods may be used as part of the key exchange in
application protocols (e.g., TLS).

The module provides approved key transport methods according to IG D.9. Even though the
module does not implement the GCMP and TLS protocols, the module claims compliance for AES-
GCM under IG A.5 under the context of TLS and GCMP usage (Section 10.2.2). As such, there is a
scenario under which the AES-GCM algorithm can be used as key transport for an application that
implements the GCMP and TLS protocols. Therefore, the module implements the key transport
methods by:

• Using an approved key wrapping algorithm (AES-KW, AES-KWP).

• Use of the approved AES-GCM authenticated encryption mode under the context of an
application establishing a connection using the wireless protocol GCMP or using a TLS
ciphertext with the AES-GCM authenticated encryption mode. Note that in a GCMP
connection, the AES-GCM encryption is used.

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 36 of 45

Table 7 and Table 8 specify the key sizes allowed in the FIPS mode of operation. According to
“Table 2: Comparable strengths” in [SP800-57], the key sizes of key wrapping, transport, and
shared secret computation (using the respective symmetric algorithm, RSA, Diffie-Hellman and EC
Diffie-Hellman) provide the following security strengths:

• AES key wrapping provides between 128 and 256 bits of encryption strength.

• RSA key wrapping provides between 112 and 256 bits of encryption strength.

• Diffie-Hellman shared secret computation provides between 112 and 256 bits of encryption
strength.

• EC Diffie-Hellman shared secret computation provides between 112 and 256 bits of
encryption strength.

• Use of approved authenticated encryption mode (AES-GCM) within GCMP and TLS. In these
contexts, the key establishment methodology provides 128 or 256 bits of encryption
strength.

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 37 of 45

8 Electromagnetic Interference/Electromagnetic Compatibility
(EMI/EMC)

The test platforms listed in Table 3 have been tested and found to conform to the EMI/EMC
requirements specified by 47 Code of Federal Regulations, FCC PART 15, Subpart B, Unintentional
Radiators, Digital Devices, Class A (i.e., Home use). These devices are designed to provide
reasonable protection against harmful interference when the devices are operated in a
commercial environment.

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 38 of 45

9 Self-Tests

9.1 Power-Up Self-Tests

The module performs power-up self-tests (POSTs) automatically when the module is powered on.
These POSTs ensure that the module is not corrupted and that the cryptographic algorithms work
as expected. No operator intervention is necessary to run the POSTs.

While the module is executing the POSTs, services are not available, and input and output are
inhibited. The module is not available for use until successful completion of the POSTs.

The integrity of the module’s software components (the kernel and the SummitSSL components) is
individually verified by the fipscheck integrity test tool using an HMAC-SHA2-256. The HMAC value
of each software component is computed at build time and stored in the .hmac file for each
component. The value is recalculated at runtime for the image of the kernel and for the
SummitSSL binary, and then compared against the stored value in the file. If the comparison
succeeds, then the remaining POSTs (consisting of the algorithm-specific Known Answer Tests) for
SummitSSL are performed. The kernel component executes its algorithm-specific Known Answer
Tests before the fipscheck integrity test tool executes to verify the integrity of the kernel.

On successful completion of the all the power-up tests, the module becomes operational and
cryptographic services are then available. If any of the tests fails, the module transitions to the
error state and subsequent calls to the module will fail. The status of the module can be
determined by the availability of the module. If the module is available, then it had passed all self-
tests. If the module is unavailable, it is because the POST procedure failed, and the module has
transitioned to the error state. Thus, in the error state, no further cryptographic operations will be
possible.

Table 11 details the self-tests that are performed on the FIPS-approved cryptographic algorithms
supported in the FIPS-approved mode of operation, using the Known-Answer Tests (KATs) and
Pairwise Consistency Tests (PCTs).

Table 11: Self-tests.

Algorithm Test

Kernel and Hardware Components

AES • KAT AES(GCM) with 128-bit key, encryption

• KAT AES(ECB) with 128-bit key, encryption and decryption

SummitSSL Component

AES • KAT AES(GCM) with 256-bit key, encryption

• KAT AES(ECB) with 128-bit key, decryption

DSA • PCT DSA signature generation and verification with L=2048, N=224
and SHA2-256

RSA • KAT RSA PSS signature generation and verification with 2048-bit key
SHA2-256

ECDSA • PCT ECDSA signature generation and verification with P-224 and K-233,
both with SHA2-512

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 39 of 45

Algorithm Test

KAS FFC (Diffie-
Hellman)

• Primitive "Z" Computation KAT with 2048-bit key

KAS ECC (EC
Diffie-Hellman)

• Primitive "Z" Computation KAT with P-224 curve

DRBG • KAT CTR_DRBG using AES-256 with and without DF, with and without PR

KBKDF • KAT with HMAC-SHA2-256

KDF in TLS
v1.0/1.1

• KAT with HMAC-SHA-1

KDF in TLS v1.2 • KAT with HMAC-SHA2-256, HMAC-SHA2-384, HMAC-SHA2-512

HMAC • KAT HMAC-SHA-1

• KAT HMAC-SHA2-256

• KAT HMAC-SHA2-512

SHS • KAT SHA-1

Module Integrity • HMAC-SHA2-256

9.2 Conditional Self-Tests

Conditional tests are performed during operational state of the module when the respective
cryptographic functions are used. If any of the conditional tests fails, the module transitions to the
error state.

Table 12 lists the conditional self-tests performed by the functions.

Table 12: Conditional self-tests.

Algorithm Test

DSA Key generation PCT using SHA2-256, signature generation and verification

ECDSA Key
generation

PCT using SHA2-256, signature generation and verification

RSA Key generation PCT using SHA2-256, signature generation and verification, and for
encryption and decryption

NDRNG Continuous Test (previous and current random data are compared for
equality; in which case the test fails)

9.3 On-Demand Self-tests

The module provides the Self-Test service to perform self-tests on demand. On demand self-tests
can be invoked by powering-off and powering-on the module. This service performs the same
cryptographic algorithm tests executed during power-up. During the execution of the on-demand
self-tests, cryptographic services are not available, and no data output or input is possible.

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 40 of 45

10 Guidance

This section provides guidance for the Crypto Officer and the User to maintain proper use of the
module per FIPS 140-2 requirements.

10.1 Crypto-Officer Guidance

Before deploying the module for usage, the Crypto Officer shall employ the following steps:

1. Verify the HMAC values of each component of the module as listed in Table 2.

2. Verify that the kernel component command line is configured to run fipsInit.sh before
any user mode application or init system.

3. Verify that ‘fips=1’ parameter is present on the kernel command line for FIPS mode
operation.

4. Verify that ‘fips_wifi=1’ is present on the kernel command line for FIPS mode operation.

10.2 User Guidance

As specified in Section 2.5, the mode of operation of this module is implicitly selected depending
upon which security functions or services and key sizes or curves are being used, and the
invocation of FIPS_mode_set(1) or FIPS_mode_set(0) command prior to the cryptographic service.

To run the module in FIPS mode, the user shall follow the rules detailed in Section 2.5 and only use
the FIPS approved or allowed services listed in Table 5, or the validated or allowed cryptographic
algorithms and security functions listed in Table 7 and Table 8.

10.2.1 Random Number Generator

The SummitSSL API call of RAND_cleanup must not be used. This call will clean up the internal
DRBG state. This call also replaces the DRBG instance with the non-FIPS Approved libcrypto
Deterministic Random Number Generator when using the RAND* API calls.

10.2.2 AES GCM IV

AES-GCM encryption and decryption are used in the context of the TLS protocol version 1.2 using
the SummitSSL component (corresponding to Scenario 1 of FIPS 140-2 IG A.5), and in the context
of IEEE 802.11 GCMP using the kernel/hardware components (corresponding to Scenario 3 of FIPS
140-2 IG A.5).

For TLS v1.2, the module is compliant with [SP 800-52] and the mechanism for IV generation is
compliant with [RFC5288]. For this compliance, the module’s implementation of the AES-GCM shall
be used together with an application that negotiates the protocol session’s keys and the 32-bit
nonce value of the IV. The nonce is considered the “name” field in Scenario 3 of IG A.5. The setting
of the counter portion of the IV is performed within the cryptographic boundary.

The nonce explicit part of the IV does not exhaust the maximum number of possible values for a
given session key. This condition is implicitly ensured by the design of the TLS protocol, in which
the nonce_explicit is denied exhaustion by the control exerted by the protocol’s management logic
(wherein the nonce_explicit is incremented per each TLS record). This management logic also
implies that the probability of an exhaustion of all 264 – 1 values of the nonce_explicit for the same
TLS session in a realistic time frame is not significant.

For IEEE 802.11 GCMP, the module implements an internal production unit logic that constructs
the IV deterministically upon the initialization of a GCMP connection, and therefore the
initialization of a GCM encryption context. The 96-bit IV is divided into a 48-bit Transmitter Address
field, and a 48-bit Packet Number (PN) field.

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 41 of 45

The module obtains the Transmitter Address field from the network interface (the wireless network
adapter) that is part of the operational environment of the module. This Address field is typically
an IEEE 802 Medium Access Control (MAC) address that uniquely identifies the module during the
GCMP connection and remains the same value throughout the lifetime of the connection. In
Scenario 3 of FIPS 140-2 IG A.5, this Address field corresponds to the “name” field.

The 48-bit Packet Number field is deterministically constructed by the module as a counter field,
starting at 1 and strictly incrementing by 1 at each invocation of the GCMP encryption in the
context of the GCMP connection. The counter is never allowed to repeat for the same context. If
the maximum number of values for the counter is exhausted, the module refuses to offer the GCM
encryption service, and thus the GCMP context is aborted. This Packet Number field corresponds
to the deterministic non-repetitive counter in Scenario 3 of FIPS 140-2 IG A.5. The combined length
from the 48-bit Address field and 48-bit Packet Number forms the GCM IV of 96 bits.

The module also receives the GCM IV from the GCMP layer outside of the boundary of the module
and verifies whether the IV as computed by the GCMP layer matches the IV as constructed
internally by the module. If there is a mismatch, the module does not allow the GCM encryption
service to be provided and the GCMP context is aborted.

To invoke the compliant GCM in the kernel/hardware components, the user must use the
construction below:

gcmp(gcm(atmel-aes-ctr,ghash)))

In case the module’s power is lost and then restored, the key used for AES GCM encryption or
decryption shall be re-distributed.

10.2.3 AES-XTS

The AES algorithm in XTS mode can be only used for the cryptographic protection of data on
storage devices, as specified in [SP800-38E]. In addition, the length of a single data unit encrypted
with the XTS-AES shall not exceed 220 AES blocks, that is, 16 MiB of data.

In addition, to meet the requirement in [FIPS140-2_IG] A.9, the module implements a check to
ensure that the two AES keys used in XTS-AES algorithm are not identical.

10.2.4 Key Usage and Management

In general, a single key shall be used for only one purpose (e.g., encryption, integrity,
authentication, key wrapping, random bit generation, or digital signatures) and be disjoint
between the modes of operations of the module. Thus, if the module is switched between its FIPS
mode and non-FIPS mode or vice versa, the following procedures shall be observed:

• The DRBG engine shall be reseeded.

• CSPs and keys shall not be shared between security functions of the two different modes.

10.3 Handling Self-Test Errors

The module transition to error state when any of self-tests or conditional tests fails in any of the
components of the module. In such a case, the module, while in the error state, inhibits output and
make no cryptographic service available. After logging the error, the module then automatically
reboots in attempt to recover from the errors.

Following are the error messages specific to self-test failure as reported by the SummitSSL
component:

FIPS_R_FINGERPRINT_DOES_NOT_MATCH – The integrity verification check failed

FIPS_R_SELFTEST_FAILED – a known answer test failed

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 42 of 45

FIPS_R_TEST_FAILURE – a known answer test failed (RSA); pairwise consistency test failed (DSA)

FIPS_R_PAIRWISE_TEST_FAILED – a pairwise consistency test failed during DSA, ECDSA or RSA key
generation

FIPS_R_DRBG_STUCK – the DRBG generated two same consecutive values

These errors are reported through the regular ERR interface of the module.

The only way to recover from the error state is through rebooting the module and restarting the
application. If failures persist, the module shall be reinstalled. If, after reinstallation, the module
still accuses failures, then the module shall be decommissioned.

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 43 of 45

11 Mitigation of Other Attacks

The vendor does not claim any mitigation of other attacks for this module.

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 44 of 45

12 Acronyms, Terms and Abbreviations

Term Definition

AES Advanced Encryption Standard

AESNI Advanced Encryption Standard New Instructions

AVX Advanced Vector Extensions

AVX2 Advanced Vector Extensions 2

CAVP Cryptographic Algorithm Validation Program

CMVP Cryptographic Module Validation Program

CSE Communications Security Establishment

CSP Critical Security Parameter

DH Diffie-Hellman

DHE Diffie-Hellman Ephemeral

DRBG Deterministic Random Bit Generator

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

EDC Error Detection Code

HMAC (Keyed) Hash Message Authentication Code

IKE Internet Key Exchange

KAT Known Answer Test

KDF Key Derivation Function

NDRNG Non-Deterministic Random Number generator

NIST National Institute of Standards and Technology

PAA Processor Algorithm Acceleration

POST Power-On Self Test

PR Prediction Resistance

PSS Probabilistic Signature Scheme

PUB Publication

SHA2 Secure Hash Algorithm

SSSE3 Supplemental Streaming SIMD Extensions 3

VPAES AES with Vector Permutations

TLS Transport Layer Security

Summit Linux FIPS Core Crypto Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Laird Connectivity; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 45 of 45

13 References

The FIPS 140-2 standard, and information on the CMVP, can be found at
http://csrc.nist.gov/groups/STM/cmvp/index.html. More information describing the module can be
found on the vendor web site at http://lairdconnect.com.

This Security Policy contains non-proprietary information. All other documentation submitted for
FIPS 140-2 conformance testing and validation is proprietary and is releasable only under
appropriate non-disclosure agreements.

BarkerElaine, RoginskyAllen SP 800-131A Revision 1. Transitions: Recommendation for

Transitioning the Use of Cryptographic Algorithms and Key Lengths．s.l.，National Institute of

Standards & Technology，11 2015．

IEEE802.11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications．
s.l.，IEEE，2016．

National Institute of Standards and TechnologyFIPS PUB 186-2: Digital Signature Standard

(DSS)．[Online]27 January 2000．[Cited: 01 April 2019．
]https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-

2.pdf．

National Institute of Standards TechnologyAnnex B: Approved Protection Profiles for FIPS PUB

140-2, Security Requirements for Cryptographic Modules．21 12 2016．

—．FIPS PUB 140-2. Security Requirements for Cryptographic Modules．25 5 2001．

—．FIPS PUB 180-4. Secure Hash Standard (SHS)．Gaithersburg, MD 20899-8900，National

Institute of Standards & Technology，3 2012．

—．FIPS PUB 186-4. Digital Signature Standard (DSS)．s.l.，

https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.186-4.pdf，July 2013．

—． FIPS PUB 198-1. The Keyed-Hash Message Authentication Code (HMAC)．7 2008．[Online:

accessed 26-December-2014]．

—．Implementation Guidance for FIPS 140-2 and the Cryptographic Module Validation Program．

[Online]16 August 2019．[Cited: 27 August 2019．
]https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-

program/documents/fips140-2/fips1402ig.pdf．

http://csrc.nist.gov/groups/STM/cmvp/index.html
http://lairdconnect.com/

	Summit Linux FIPS Core Crypto Module
	FIPS 140-2 Non-Proprietary Security Policy
	Prepared by:
	atsec information security corporation
	9130 Jollyville Road, Suite 260
	Austin, TX 78759
	www.atsec.com
	1 Introduction
	1.1 Purpose of the Security Policy
	1.2 Target Audience
	1.3 How this Security Policy was Prepared

	2 Cryptographic Module Specification
	2.1 Module Overview
	2.2 FIPS 140-2 Validation Scope
	2.3 Definition of the Cryptographic Module and its Cryptographic Boundaries
	2.4 Tested Environments
	2.5 Modes of Operation

	3 Module Ports and Interfaces
	4 Roles, Services and Authentication
	4.1 Roles
	4.2 Services
	4.2.1 Services in the FIPS-Approved Mode of Operation
	4.2.2 Services in the Non-FIPS-Approved Mode of Operation

	4.3 Algorithms
	4.3.1 FIPS-Approved
	4.3.2 Non-Approved-but-Allowed
	4.3.3 Non-Approved

	4.4 Operator Authentication

	5 Physical Security
	6 Operational Environment
	6.1 Applicability
	6.2 Policy

	7 Cryptographic Key Management
	7.1 Random Number Generation
	7.2 Key Generation
	7.3 Key Entry/Output
	7.4 Key/CSP Storage
	7.5 Key/CSP Zeroization
	7.6 Key Establishment

	8 Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)
	9 Self-Tests
	9.1 Power-Up Self-Tests
	9.2 Conditional Self-Tests
	9.3 On-Demand Self-tests

	10 Guidance
	10.1 Crypto-Officer Guidance
	10.2 User Guidance
	10.2.1 Random Number Generator
	10.2.2 AES GCM IV
	10.2.3 AES-XTS
	10.2.4 Key Usage and Management

	10.3 Handling Self-Test Errors

	11 Mitigation of Other Attacks
	12 Acronyms, Terms and Abbreviations
	13 References

